AR-B6002FLCT

Software Installation and
Programming Guide

Ver. 1.0
Author: Charlie Chan
Date: 2012/6/27

Revision History

Version

Author

Date

Description

Rev. 1.0

Charlie Chan

2012/6/27

The initial version.

Table of Content

Lo IEOAUCHION ..t 1
1.1. CAN DUS -ttt ettt et et e e enbeeeenaeeas 1
1.1.1. OVEIVIEW ..ttt e e e e 1

1.1.2. Installation Procedure of CAN Bus Driver........ccccccevveivvvveeeeennn. 1

1.1.3. The CAN BUS APISooiiiiiiiiieeeeee e 1

1.1.4. CAN Message FOrmatccccvvvivieeeeeeiiiiiiiieeee e eeeiiiieeee e 2

1.2. GPIO and WatChdOg.......ccceeeeiiiiiiiiiieeeeeeeceee e 5
1.2.1. OVEIVIEW ..ttt e e 5

1.3. POWeET SUDSYSEEMevviiiiiieeeeeeiiiiiieeee e e e e e e 6
1.3.1. OVEIVIEW ..ttt e e 6

2. File DESCTIPHIONS.uuuiiiieeeeeeiiiiiiiieee e e e e eeeiiie e e e e e e e srttbaeeeeeeeeessnnnnssaeaeeeeeessnnnnes 6
2.1. CAN BUS. .ttt et et e e st eeaeeeas 7

2.2. GPIO and WatChdOg.......ccceeeeiiiiiiiiiiieeeeeceeee e 7

2.3. POWeET SUDSYSEEMevviiiiieeeeeeeciiiieeeee et e e e e e 7

3. API List and DeSCTIPLIONSuvviieieeeiiiiiiiiiieeeeeeeeciiiieeeeeeeeeeseiaraeeeeeeeeeseneeeaeeees 8
3.1. CAN BUS. .ottt ettt e sebee e ebeeeeaneees 8

3.2. GPIO and WatchdOg.......cccoeeeiiiiiiiiieeeeeeeeeee e 12
32,10 GPIO s 12

3.2.2. WatChdO@. .. eeveeeeeeeiieeee e 16

3.3. POWeET SUDSYSEEMevvviiiiiieeeeeciiiieeeee e e e e e e 19

F N 0] 0 1S] 114) QA SR UU P PUPPUURRRRN 28

1. Introduction

1.1. CAN bus
1.1.1. Overview

The CAN bus APIs provide interfaces to CAN bus subsystem. By invoking these
APIs, programmers can implement applications which have the functions listed
below:
1. Set the BAUD rate.
2. Send the CAN packages over the CAN bus.
3. Receive the CAN packages via the CAN bus hardware interface.

In this CAN bus API package, we provides:
1. On Linux platform:
Linux driver module of CAN bus subsystem and the driver load / unload scripts.
On Windows platform:
Device driver and install program of CAN bus subsystem.
2. API header file.
API libraries in static library format and shared library format.

3. CAN bus test utility and its source code.

1.1.2. Installation Procedure of CAN Bus Driver

On Linux platform:

1. Change to the ‘root’ user account.

2. Inthe ‘driver’ directory, execute the script ‘modld’.

3. Execute ‘Ismod’.

4. Make sure ‘arb6002’ is in the module list.

5. Ifthe driver is no longer needed, execute the script ‘modul’ to unload the driver.

On Windows platform:

1. In the driver directory, execute the ‘SetupDriver.exe’ program.

1.1.3. The CAN bus APIs

Before executing the applications which invoke the CAN bus APIs, users should
make sure that the Linux device driver or the Windows device driver of CAN bus has
been installed.

On Linux platform, after successfully installing the device driver, a character
device node named “/dev/can0” will be created automatically. The APIs open the
device node “/dev/can0” implicitly so acquiring a file descriptor of “/dev/can0” by

users is not ncecssary. In order not to degrade the performance of the CAN bus

subsystem, the device node “/dev/can0” is limited to be opened at most once at any
moment, i.e., if application A accesses CAN bus via the APIs, the application B which
either tries to open ‘/dev/can0’ or uses CAN bus API will result in failure.

On Windows platform, after successfully installing the device driver, there is a
device which shows ‘CAN Bus Driver’ in the ‘Device Manager’. The APIs on
Windows platform open this device implicitly. User can call the APIs directly without
opening the CAN Bus subsystem device.

1.1.4. CAN Message Format

Windows

typedef struct T CANBUS MSG {

DWORD dwFlag;

DWORD dwObjectNumber;
DWORD dwMsglD;

DWORD dwSecond;

DWORD dwMicroSecond;
WORD wDatalen;

BYTE szDatal 8];

} T CANBUS MSG;

To transmit a CAN package, the programmer has to fill in the fields in the variable of
type T CANBUS_MSG and pass this T CANBUS MSG variable as an argument to invoke
the APIs. The fields in CAN message are described below:

dwFlag:
This field holds the information of message type. Programmers can set the

message type as:

1. Standard Data Frame:
T CANBUS MSG CanMsg;,
CanMsg.dwFlag = 0x00000000;

2. Remote Transmission Request in Standard Data Frame format
T CANBUS MSG CanMsg;
CanMsg.dwFlag = 0x00000000;
CanMsg.dwFlag |= FLAG RTR;

3. Extended Data Frame:
T CANBUS MSG CanMsg;
CanMsg.dwFlag |= FLAG EXT;

4. Remote Transmission Request in Extended Data Frame format
T CANBUS MSG CanMsg;
CanMsg.dwFlag |= (FLAG EXT |FLAG RTR);

dwObjectNumber:

This field is reserved for holding a message communication object number.
dwMsgID:

CAN message ID.
dwSecond, dwMicroSecond:

When a CAN package is received, the CAN device driver will annotate a
timestamp to the timestamp field in the canmsg_t variable and return this canmsg_t
variable to the caller.
wDatalen:

The number of the data bytes which are sent or received in the ‘szData’ field of
CAN message. This field is necessary while transmitting a Standard or Extended Data
Frame. Programmers have to explicitly set up this field. The length of data is 0~8.
For example:

T CANBUS MSG msg;

msg.szData[0] = Oxal;
msg.szData[l] = 0xb2;
msg.szData[2] = 0xc3;

msg.wDatalLen = 3;
szData:

The byte array which holds the message data.

Linux

// TPE DEFINE

typedef char 18;

typedef unsigned char us;

typedef short 116;
typedef unsigned short ul6;

typedef unsigned long u32;
typedef int 132;

typedef struct timeval {
long tv_sec;
long tv_usec;

} timeval,;

typedef struct {

132 flags;
132 cob;
u32 id;
struct timeval timestamp;
116 length;
ud data|[8];
} canmsg_t;

To transmit a CAN package, the programmer has to fill in the fields in the variable of
type canmsg_t and pass this canmsg_t variable as an argument to invoke the APIs.
The fields in CAN message are described below:
flags:
This field holds the information of message type. Programmers can set the

message type as:
5. Standard Data Frame:

canmsg_t msg; // Declare a variable ‘msg’ of type ‘canmsg_t’

msg.flags = 0; // Setting the flags field to 0 defines the ‘msg’ as an

// ordinary standard data frame.

6. Remote Transmission Request in Standard Data Frame format

canmsg_t msg;

msg.flags =0; // Setting the flags field to 0 defines the ‘msg’ as an

// ordinary standard data frame.

msg.flags = msg.flags | MSG_RTR; // Enable the RTR flag.
7. Extended Data Frame:

canmsg_t msg;

msg.flags =0 | MSG_EXT; // Setting the EXT flag in the ‘flags’ field

// defines the ‘msg’ as an extended data frame.

8. Remote Transmission Request in Extended Data Frame format

canmsg_t msg;

msg.flags =0 | MSG_EXT | MSG_RTR; // Enable the RTR flag.
cob:
This field is reserved for holding a message communication object number.
id:
CAN message ID.

timestamp:

When a CAN package is received, the CAN device driver will annotate a
timestamp to the timestamp field in the canmsg_t variable and return this canmsg_t
variable to the caller.
length:

The number of the data bytes which are sent or received in the ‘data’ field of
CAN message. This field is necessary while transmitting a Standard or Extended Data
Frame. Programmers have to explicitly set up this field. The length of data is 0~8.
For example:

canmsg_t msg;

msg.data[0] = Oxal;
msg.data[1] = 0xb2;
msg.data[2] = 0xc3;

msg.length = 3;
data:
The byte array which holds the message data.

1.2. GPIO and Watchdog
1.2.1. Overview

AR-B6002 provides both a GPIO interface and a Watchdog timer. Users can use
the GPIO and Watchdog APIs to configure and to access the GPIO interface and the
Watchdog timer. The GPIO has four input pins and four output pins. The Watchdog
timer can be set to 1~255 seconds. Setting the timer to zero disables the timer. The
remaining seconds of the timer to reboot can be read from the timer.

In this GPIO and Watchdog package, on Linux and Windows platform, we
provides:
1. API source code.
2. GPIO and Watchdog test utility and the utility source code.

1.3. Power Subsystem
1.3.1. Overview
When the AR-B6002 is at Power Mode 15, the Power Subsystem APIs can be
used to get and set the configuration of power subsystem. By invoking the Power
Subsystem APIs, the users can:
1. Get the current status of ignition (ON or OFF).
2. Set the Power-On mode. This setting will be kept in the power subsystem and
will take effect at next system boot.
From the power subsystem, get the stored setting of Power-On mode.
Get or set the time of Hard Off delay in seconds or in minutes.
Get or set the time of Soft Off delay in seconds or in minutes
Get the battery voltage.
Get the version number of the firmware of the Power Subsystem.
Set the Hard Off delay and Soft Off delay to the default value.
The power subsystem connects to the main system via the COM6. The Linux’s
default supported COM interfaces are COM1~COM4. The Power Subsystem APIs

implicitly communicate with power subsystem through COM6. Users must take extra

© NN kW

steps to configure Linux kernel in order to support COM6. Please refer to Appendix A
for more information. Users don’t need extraordinary setup on Windows platform to
support COM6.
In this Power Subsystem package, we provide:
1. The APIs to access power subsystem and the source code of the APIs.
2. The utility and source code to monitor and set up power modes, ignition status,
and power-off time.

3. On Linux platform, the Makefile to create API libraries and utility.

2. File Descriptions

On Windows platform, the following files are applied for CAN bus, GPIO,
Power/PIC and WatchDog Timer.

1. SuperloAPLh
The header file of the APIs and macro definition. This header file is an aggregate
header which includes APIs declarations and macros for CAN Bus, GPIO,
Watchdog, and Power Subsystem.

2. SuperloLib.lib
The API library in static library format. This library is an aggregate library. It

includes APIs for CAN Bus, GP1O, Watchdog, and Power Subsystem.

3. SuperloLib.dll
The API library in dynamically linked library format. This library is an aggregate
library. It includes APIs for CAN Bus, GPIO, Watchdog, and Power Subsystem.

21. CANBus
On Linux platform:
2. AGC _LIB.h
The header file of the API and macro definitions.
3. errcode.h
The macro definitions of returned error code.
4. libAGC LIB.a
The API library in static library format.
5. 1libAGC LIB.so
The API library in shared library format.
6. main.c
The source code of the utility.
7. Makefile

2.2. GPIO and Watchdog
On Linux platform:
1. sio _acce.c
The source code of the Watchdog and GPIO APIs for accessing the SuperlO.
2. sio_acce.h
This file includes the declarations of the APIs and macro definitions.
3. main.c
The source code of the utility.
4. Makefile

2.3. Power Subsystem
On Linux platform:
I. pwr_acce.c
The source code of the APIs for accessing the power subsystem.
2. pwr_acce.h
This file includes the declarations of the APIs and macro definitions.
3. main.c
The source code of the utility.
4. Makefile

3. API List and Descriptions
3.1. CAN Bus
Windows:
Notice: Before using CAN bus APIs, be sure CAN bus driver was installed

successfully.

BOOL WINAPI CanBus_Open() ;
Remarks:
You must call this function at start-up of application to open

CAN bus device.

Parameters:

(None)

Return Value:
Returns TRUE on success.

If the CAN bus driver has not installed, return FALSE.

void WINAPI CanBus_Close() ;
Remarks:
You must call this function at end of application to close CAN

bus device.

Parameters:

(None)

Return Value:

(None)

BOOL WINAPI CanBus_SetBaudrate(int nBaudrate);
Remarks:

Call this function to set CAN bus baudrate.

Parameters:
nBaudrate
Speed of transferring CAN bus messages.

Value from CANBUS BAUDRATE 10K to CANBUS BAUDRATE 1000K.

Return Value:
Returns TRUE on success, FALSE on failure.
BOOL WINAPI CanBus_GetMessage(T_CANBUS MSG* pMsg)

Remarks:

Call this function to receive CAN bus message.

Parameters:
pMsg
Pointer of structure T CANBUS MSG, to retrive CAN bus message.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI CanBus_SendMessage(T _CANBUS MSG* pMsg) ;
Remarks:

Call this function to send CAN bus message.
Parameters:
pMsg

Pointer of structure T CANBUS MSG, to send out CAN bus message.

Set dwFlag of T CANBUS MSG to 0x00000000 if message ID length
is 11 bits.

Set dwFlag of T CANBUS MSG to 0x00000004 if message ID length
is 29 bits.

Set sending data in szData[] of T CANBUS MSG.

Set wDhataLen of T CANBUS MSG to determine the byts of szDatal]

will be sent.

Return Value:

Returns TRUE on success, FALSE on failure.

Linux:

1. Syntax:

10

unsigned int sendCanMessages(canmsg_t *buffer, u§ count)
Description: This function sends out CAN packages over the CAN bus.

Parameters: If there is more than one CAN package to send, these CAN
packages are stored in a ‘canmsg_t’ array. This function sends out packages in a
sequential fashion. The memory address of the first CAN package to send is
pointed at by the parameter ‘buffer’. The number of CAN packages to send is
indicated by the parameter ‘count’. If the resource of sending out the CAN
packages is temporarily unavailable, the process which invokes this function will

be blocked (Block 1/0) until the resource is available again.

Return Value: If this function sends out the packages successfully, it returns
ERROR _API SUCC. If this function fails to open the CAN device node, it
returns ERROR _API CAN OPEN_FAIL. If this function has any problem with
sending out the CAN packages, it returns ERROR _API CANSENDMESSAGES.

Here is an example:
If the CAN packages in the array ‘canAry[]” have been initialized. The code listed
below will send out the CAN packages in the ‘canAry[]” over the CAN bus.

unsigned int result = 0;
canmsg_t canAry[30];
/* ...
Initialize the CAN packages in the canAry[30]
*/
result = sendCanMessages(canAry, 30);
if(result == ERROR_API CANSENDMESSAGES ||
result == ERROR_API CAN OPEN _ FAIL)
fprintf(stderr, “Send CAN package error!\n”);

2. Syntax:

unsigned int getCanMessages(canmsg_t *buffer, u8 count)

10

11

Description: This function receives CAN packages from the CAN bus subsystem.

Parameters: This function stores received CAN packages sequentially at an array
of type ‘canmsg_t’. The number of packages to receive is indicated by the
parameter ‘count’. Before finishing receiving ‘count’ packages, the process which
invokes this function will be temporarily blocked (Block 1/0) if there is no
incoming CAN package.

Return Value: If this function receives the packages successfully, it returns
ERROR _API SUCC. If this function fails to open the CAN device node, it
returns ERROR _API CAN OPEN_FAIL. If this function has any problem with
receiving the CAN packages, it returns ERROR_API CANGETMESSAGES.

Here is an example:

If the array ‘canAry[]’ of type ‘canmsg_t’ has been declared and allocated. The
code listed below will receive 30 CAN packages from the CAN bus subsystem
and stores the packages in the ‘canAry[]’.

unsigned int result = 0;
canmsg_t canAry[30];

result = getCanMessages(canAry, 30);
if(result == ERROR_API CANGETMESSAGES ||
result == ERROR_API CAN OPEN _ FAIL)
fprintf(stderr, “Send CAN package error!\n”);

Syntax:

unsigned int configCan(132 baud)

Description: This function sets up the speed (Baud rate) of sending and
receiving CAN packages.

Parameters: The parameter ‘baud’ could be: (the unit is Kbps)
10,20,50, 100, 125,250, 500, 800, 1000
The default speed is 125 Kbps.

Return Value: This function returns ERROR_API SUCC if it set the Baud rate

11

successfully. If this function fails to open the CAN device node, it returns
ERROR API CAN OPEN FAIL. If the inputted Baud rate is not any one of the
Baud rate listed above, it will return ERRMSG(ERROR_API CANCONFIG,

12

ERROR _GEN _INPUT DATA). If it has any other problem with setting the Baud

rate, it returns ERROR_GEN DEVICE FAIL.

3.2. GPIO and Watchdog

3.2.1. GPIO

Windows:

Notice: Before using GPIO APIs, be sure Super I/0O driver has installed

successfully.

#define
#define
#define
#define
#define
#define
#define
#define

BOOL WINAPI SuperIo Open() ;

Remarks:

GPO BIT 0
GPO BIT 1
GPO BIT 2
GPO_BIT 3
GPI_BIT 4
GPI_BIT 5
GPI_BIT 6
GPI_BIT 7

~ o o w N =B O

You must call this function at start-up of application to open

Super I/0 device.

Parameters:

(None)

Return Value:

Returns TRUE on success.

If the Super I/O driver has not

void WINAPI SuperIo_ Close();

Remarks:

installed, return FALSE.

You must call this function at end of application to close Super

I/0 device.

12

Parameters:

(None)

Return Value:

(None)

BOOL WINAPI Gpio_GetBitValue(int nBit, BYTE* pValue)
Remarks:

Call this function to get GPIO pins value.

Parameters:
nBit
Stand for GPIO pins, value GPO BIT 0 ~ GPO BIT 7.

pValue

Pointer of variable to retrieve GPIO pins state.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI Gpio_SetBitValue(int nBit, BYTE bValue);
Remarks:

Call this function to Set GPIO pins value.

Parameters:
nBit
Stand for GPIO pins, value GPO BIT 0 ~ GPO BIT 7.

bVvalue

Output value of GPIO pins, value 1 or O.

Return Value:

Returns TRUE on success, FALSE on failure.

Linux:

1. Syntax:

13

13

14

132 getInChLevel(132 channel, u8 *val)

Description: Get the value of GPIO Input and put the value at *val.

Parameters:
I. The parameter ‘channel’ indicates the GPIO Input pins to show. Users can
use the macros GPIO, GPI1, GPI2, GPI3 to indicate the GPIO Input channel.
For example:
getInChLevel(GP12, &val); // Indicate the GPIO Input channel 2
getInChLevel(GPIO | GPI3, &val); // Indicate the GPIO Input

// channel 0 and channel 3

II. The parameter ‘val’ is an unsigned character pointer. The function puts the
values of the indicated GPIO channels at the memory pointed by ‘val’. The
bit 0 of *val shows the value of GPIO Input channel 0. The bit 1 of *val
shows the value of GPIO Input channel 1. Other bits show the
corresponding GPIO Input channels. Because there are only four channels,
bit 4 ~ bit 7 of *val are always zero.

Here is an example:
If GPIO Input channel 1 and channel 3 are both 1.

unsigned char ch;
getInChLevel(GPI1|GPI3, &ch);

The returned value of variable ‘ch’ is Oxa.

Return Value: If the function gets the values successfully, it returns 0. If any error,

it returns —1.

Syntax:
132 setOutChLevel(132 channel, u8 val)

Description: Set the value of GPIO Output according to the variable “val’.
Parameters:

I. The parameter ‘channel’ indicates the GPIO Output pins to set. Users can
use the macros GPOO, GPO1, GPO2, GPO3 to indicate the GPIO Output

14

15

channels.
II. The parameter ‘val’ indicate the value to be set to GPIO Output channel.

The acceptable values is limited to 0 and 1.

For example:
/* Setting the GPIO Output channel 2 to 1 */
setOutChLevel(GPO2, 1);

/* Setting the GPIO Output channel 0 and channel 3 to 0 */
getInChLevel(GPOO | GPO3, 0);

Return Value: If the function sets the values successfully, it returns 0. If any error,

it returns —1.

Syntax:
132 getOutchLevel(132 channel, u8 *val)

Description: Get the value of GPIO Output and put the value at *val.
Parameters:

I. The parameter ‘channel’ indicates the GPIO Output pins to show. Users can
use the macros GPOO, GPO1, GPO2, GPO3 to indicate the GPIO Output
channel. For example:

getOutChLevel(GPO2, &val); // Indicate the GPIO Output channel 2

/* Indicate the GPIO Output channel 0 and channel 3. */
getOutChLevel(GPOO | GPO3, &val);

II. The parameter ‘val’ is an unsigned character pointer. The function puts the
values of the indicated GPIO channels at the memory pointed by ‘val’. The
bit 0 of *val shows the value of GPIO Output channel 0. The bit 1 of *val
shows the value of GPIO Output channel 1. Other bits show the
corresponding GPIO Output channels. Because there are only four channels,
bit 4 ~ bit 7 of *val are always zero.

Here is an example:
If GPIO Output channel 0 and channel 2 are both 1.

15

16

unsigned char ch;
getOutChLevel(GPOO|GPO2, &ch);

The returned value of variable ‘ch’ is 0x5.

Return Value: If the function gets the values successfully, it returns 0. If any error,

it returns —1.

3.2.2. Watchdog
Windows:
Notice: Before using GPIO APIs, be sure Super I/O driver was installed

successfully.

typedef enum E TIME UNIT ({

TIME UNIT SECOND,
TIME UNIT MINUTE,

} E_TIMER UNIT;

BOOL WINAPI SuperIo Open() ;
Remarks:
You must call this function at start-up of application to open

Super I/0 device.

Parameters:

(None)

Return Value:
Returns TRUE on success.

If the Super I/O driver has not installed, return FALSE.
void WINAPI SuperIo_ Close();
Remarks:

You must call this function at end of application to close Super

I/0 device.

Parameters:

16

(None)

Return Value:

(None)

BOOL WINAPI WatchDog GetTimerCount(int* pCount);
Remarks:

Call this function to get value of current WatchDog Timer

Parameters:
pCount

Pointer of variable to retrieve WatchDog Timer value.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI WatchDog GetTimerUnit(int* pTimerUnit);

Remarks:

17

Call this function to get unit of current WatchDog Timer, minute

or second.

Parameters:
pTimerUnit

Pointer of variable to retrieve WatchDog Timer unit.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI WatchDog StartTimer (int nTimerCount, int
nTimerUnit) ;
Remarks:

Call this function to start WatchDog Timer.

Parameters:
nCount
Timer value of WatchDog.
Value 2 ~ 255 if timer unit is second.

Value 1 ~ 255 if timer unit is minute.

17

18

nTimerUnit
TIME UNIT SECOND and TIME UNIT MINUTE stand for second and

minute.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI WatchDog StopTimer ()
Remarks:

Call this function to stop WatchDog Timer.

Parameters:

(None)

Return Value:

Returns TRUE on success, FALSE on failure.

Linux:
1. Syntax:
u8 getWtdTimer(void)

Description: This function read the value of the watchdog time counter and return
it to the caller.

Parameters: None.

Return Value: This function return the value of the time counter and return it to

the caller as an unsigned integer.

2. Syntax:
void setWtdTimer(u8 val)

Description: This function sets the watchdog timer register to the value ‘val’ and
starts to count down. The value could be 0 ~ 255. The unit is second. Setting the
timer register to 0 disables the watchdog function and stops the countdown.
Parameters: The parameter ‘val’ is the value to set to watchdog timer register.
The range is 0 ~ 255.

Return Value: None.

18

19

3.3. Power Subsystem

Windows:

#define POWER_ON_IGNITION OxA5

#define POWER_ON_REMOTE 0x5A
#define IGNITION_ON 0xA5
#define IGNITION OFF 0x5A

typedef enum _E TIME UNIT ({

TIME UNIT SECOND,
TIME_UNIT MINUTE,

} E_TIMER UNIT;

typedef struct _T PIC_INFO {

BYTE PicTypel[3];
BYTE PicModel[4];
BYTE PicMajorVersion;

BYTE PicMinorVersion;

} T PIC INFO;

BOOL WINAPI PowerPic Open() ;
Remarks:
Call this function to open COM port which is connected to

Power/PIC chip.

Parameters:

(None)

Return Value:

Returns TRUE on success, FALSE on failure.

void WINAPI PowerPic Close();
Remarks:
Call this function to close COM port which is connected to

Power/PIC chip.

19

20

Parameters:

(None)

Return Value:

(None)

BOOL WINAPI PowerPic_SetDefaultValue() ;
Remarks:

Call this function to set default value for Power/PIC.

Parameters:

(None)

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI PowerPic_GetPicMode (BYTE* pMode) ;
Remarks:
Call this function to get current PIC mode, the value is 0 ~

15.

Parameters:
pMode

Pointer of wvariable to retrieve current PIC mode.
Return Value:
BOOL WINAPI PowerPic_GetPowerOnMode (BYTE* pMode) ;
Remarks:
Call this function to get current Power-On mode, If success,
the value is POWER ON_ IGNITION or POWER ON REMOTE.
Parameters:
pMode

current Power-0On mode.

Return Value:

20

21

Returns TRUE on success, FALSE on failure.

BOOL WINAPI PowerPic_SetPowerOnMode(BYTE bMode)
Remarks:

Call this function to set Power-On mode.

Parameters:
bMode
Set value POWER_ON_IGNITION or POWER_ON_REMOTE.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI PowerPic_ GetHardOffDelayTime(int* pSeconds);
Remarks:
Call this function to get how many time to turn off hardware

power.

Parameters:
pSeconds

Pointer of variable to retrieve delay time in second unit.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI PowerPic GetSoftOffDelayTime(int* pSeconds);
Remarks:
Call this function to get how many time to shutdown Windows.

system.
Parameters:
pSeconds

Pointer of variable to retrieve delay time in second unit.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI PowerPic_SetSoftOffDelayTime(int nTime, int

21

22

nTimeUnit) ;
Remarks:

Call this function to set how many time to shutdown Windows.

Parameters:
nTime
Time to shutdown Windows, the real value is depend on

nTimeUnit.

nTimeUnit
TIME UNIT SECOND or TIME UNIT MINUTE.
If nTimeUnit is TIME UNIT MINUTE, the real delay time is nTime
* 60.

Return Value:
Returns TRUE on success, FALSE on failure.
BOOL WINAPI PowerPic_SetHardOffDelayTime(int nTime, int
nTimeUnit) ;
Remarks:
Call this function to set how many time to turn off hardware

power.

Parameters:
nTime
Time to turn off hardware power, the real value is depend on

nTimeUnit.

nTimeUnit
TIME UNIT SECOND or TIME UNIT MINUTE.
If nTimeUnit is TIME UNIT MINUTE, the real delay time is nTime
* 60.

Return Value:

Returns TRUE on success, FALSE on failure.
BOOL WINAPI PowerPic_ GetIgnitionStatus(BYTE* pStatus);

Remarks:

Call this function to get status of ignition.

22

23

Parameters:
pStatus
Pointer of variable to retrieve status of ignition.

If success, the value will be IGNITION ON or IGNITION OFF.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI PowerPic_ GetBatteryVoltage(float *pVoltage);
Remarks:

Call this function to get the value of Power-Supply.

Parameters:

Pointer of variable to retrieve voltage value, in float type.

Return Value:

Returns TRUE on success, FALSE on failure.

BOOL WINAPI PowerPic GetFirmwareVersion(T _PIC_INFO *pPicInfo);
Remarks:

Call this function to get the version of PIC firmware.

Parameters:
pPicInfo
Pointer of structure T PIC INFO to get information about PIC

firmware.

Return Value:

Returns TRUE on success, FALSE on failure.

If success, the member variable PicMajorVersion &
PicMinorVersion of T PIC INFO are ASCII format. For example, if
the both value are 0x49 & 0x50, It means the PIC firmware version

is \\1 2//

Linux:
1. Syntax:
132 getlgnStatus(u8 *ignStatus)

23

24

Description: Get the current ignition status. The ignition has two statuses: ON or
OFF.

Parameters: This function puts the ignition status at the memory pointed by the
unsigned character pointer ‘ignStatus’. If the returned status is 0xa5, the ignition is
ON. If the returned status is 0x5a, the ignition is OFF. There are macros of
Ignition ON and Ignition OFF in pwr_acce.h.

Return Value: If the function gets the ignition status and put it at the memory
pointed by the argument successfully, this function will return 0. If any error, the

function returns —1.

2. Syntax:
132 setSoftOffDelayS(u32 setTime)

Description: The Soft Off Delay is the interval between that the system receives a
power off signal and that the system generates a power off signal. This function
sets up the interval in seconds.

Parameters: The parameter is of the type of unsigned long. The value of the
parameter ranges from 0~255. The unit of the value of the parameter is seconds.

Return Value: If the function sets the delay time successfully, it will return 0. If

any error, the function returns —1.

3. Syntax:
132 setSoftOffDelayM(u32 setTime)

Description: The Soft Off Delay is the interval between that the system receives a
power off signal and that the system generates a power off signal. This function
sets up the interval in minutes.

Parameters: The parameter is of the type of unsigned long. The value of the
parameter ranges from 0~255. The unit of the value of the parameter is minutes.

Return Value: If the function sets the delay time successfully, it will return 0. If

any error, the function returns —1.

4. Syntax:
132 setHardOffDelayS(u32 setTime)

24

25

Description: The Hard Off Delay is the interval between that the system is off and

that the power SVSB is off. This functions set up the interval in seconds.
Parameters: The parameter is of the type of unsigned long. The value of the
parameter ranges from 0~255. The unit of the value of the parameter is seconds.

Return Value: If the function sets the delay time successfully, it will return 0. If

any error, the function returns —1.

5. Syntax:
132 setHardOffDelayM(u32 setTime)

Description: The Hard Off Delay is the interval between that the system is off and

that the power 5VSB is off. This functions set up the interval in minutes.
Parameters: The parameter is of the type of unsigned long. The value of the
parameter ranges from 0~255. The unit of the value of the parameter is minutes.

Return Value: If the function sets the delay time successfully, it will return 0. If

any error, the function returns —1.

6. Syntax:
132 setPowerOnMode(u8 powerOnMode)

Description: The function sets up the source of the boot-up signal of the system.

There are two choices: boot from the Ignition or boot from the Remote Switch.

Parameters:
PowerOnMode = Oxa5, boot up by the Ignition.
PowerOnMode = 0x5a, boot up by the Remote Switch.
There are macros of Ignition mode and Remote Switch mode in pwr_acce.h
(Linux) and AR-B6002.h(Windows).

Return Value: If the function sets power-on mode successfully, it will return 0. If

any error, the function returns —1.

7. Syntax:

25

26

132 getSoftOffDelay(u32 *Time)

Description: The Soft Off Delay is the interval between that the system receives a
power off signal and that the system generates a power off signal. This function

gets the interval.

Parameters: The parameter is a pointer which points to an unsigned long variable.
The returned value is stored at this variable. The unit of the returned value is in
seconds.

Return Value: If the delay time is returned successfully, the function returns 0. If

any error, it returns —1.

Syntax:
132 getHardOftDelay(u32 *Time)

Description: The Hard Off Delay is the interval between that the system is off and
that the power 5VSB is off. This function gets the interval.

Parameters: The parameter is a pointer which points to an unsigned long variable.
The returned value is stored at this variable. The unit of the returned value is in

seconds.

Return Value: If the delay time is returned successfully, the function returns 0. If

any error, it returns —1.

Syntax:
132 getPowerOnMode(u8 *powerOnMode)

Description: The function gets the setting of power-on mode. There are two
modes: boot from the Ignition or boot from the Remote Switch.

Parameters: The parameter is a pointer which points to an unsigned character.
The returned code is stored at this memory. There are two power-on modes:
PowerOnMode = Oxa5, boot up by the Ignition.
PowerOnMode = 0x5a, boot up by the Remote Switch.

26

27

Return Value: If the power-on mode is returned successfully, the function returns

0. If any error, it returns —1

10. Syntax:
132 getBattVolt(float *volt)

Description: The function gets the voltage reading of the battery.

Parameters: The parameter ‘volt’ is a pointer which points to an variable of type
‘float’. The unit of the returned value is voltage.

Return Value: If the reading of voltage is returned successfully, the function

returns 0. If any error, it returns —1

11. Syntax:
132 getPicFwVer(struct PicInfo *ver)

Description: The function gets version information of Power Subsystem

firmware.

Parameters: The parameter is a pointer which points to a ‘PicInfo’ structure,
which consists of 9 unsigned characters. Here is the definition of structure
‘PicInfo’:
type struct {
u8 type[3]; // ' The type of the power subsystem
u8 mode[4]; // The mode at which the power subsystem is
operating.
u8 majorVersion; // Major version number of the firmware
u8 minorVersion; // Mimor version number of the firmware
} Piclnfo;

PicInfo piclnfo;
getPicFwVer(&piclnfo);

printf(“%c.%c\n”, picInfo.majorVersion, picInfo.minorVersion);

Return Value: If the version information is returned successfully, the function

returns 0. If any error, it returns —1.

27

12. Syntax:
132 getPicMode(u8 *mode)

Description: The function gets the mode number at which the Power Subsystem

is operating..

Parameters: The parameter is a pointer which points to a variable of type

28

‘unsigned char’. The returned mode number is put at the memory which is pointed

by parameter ‘mode’.

Return Value: If the mode information is returned successfully, the function

returns 0. If any error, it returns —1

13. Syntax:
132 setPicDefault(void)

Description: The function restores the SoftOffDelay and HardOffDelay to the
default value.

Parameters: None.

Return Value: If this function works successfully, the function will return 0. If

any error, it will return —1.

Appendix A
Users have to modify the boot loader configuration to support COM6. Take the
grub configuration file as an example. Add ‘8250.nr_uarts=XX noirqdebug’ at the
setting of kernel. Here, XX represents the number of COM ports the system will
support. Because the power subsystem connects to main system via COM6, the XX

must be greater or equal to 6.

1. Modify the grub.conf.

[root@linux ~]# vi /boot/grub/grub.conf
default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

28

title Fedora Core (2.6.27.5.117.FC10)

root (hd0,0)

kernel /vmlinuz-2.6.27.5.117.FC10 ro root=/dev/hda2 rhgb quiet
8250.nr_uarts=6 noirqdebug

initrd /initrd-2.6.27.5.117.FC10.img

2. List the status of the COM ports in the system.

setserial -g /dev/ttyS*

/dev/ttyS0, UART: 16550A, Port: 0x0318, IRQ: 4
/dev/ttyS1, UART: 16550A, Port: 0x0218, IRQ: 3
/dev/ttyS2, UART: 16550A, Port: 0x03e8, IRQ: 11
/dev/ttyS3, UART: 16550A, Port: 0x02e8, IRQ: 10
/dev/ttyS4, UART: 16550A, Port: 0x04£8, IRQ: 11
/dev/ttySS, UART: 16550A, Port: 0x04e8, IRQ: 10

The node ‘/dev/ttyS5’ corresponds to COM6. The 10 port is 0x4e8, IRQ 10.

29

29

